
Diffie-Hellman Key Agreement Protocol (DH KAP)

Public Parameters PP=(p,g)

Open
Communication

Channel

Signature creation for message M using ECDSA
Signature is formed on the h-value h of Hash function of M.
Recommended to use SHA256 algorithm

h = H(M)=SHA256(M);1.
i <-- randi; |i|≤ 256 bits;2.
R = i*G = i*(xG, yG) = (xR, yR);3.
r = xR mod p; 4.
s = (h + z • r) • i-1 mod p; |s|≤ 256 bits; // Since p is prime, then exists s-1 mod p.5.
 // >> s_m1=mulinv(s,p) % in Octave

Sign(PrKECC=z, h) = ϭ = (r, s) 6.

ElGamal Cryptosystem (CS) Elliptic Curve Cryptosystem (CS)

PP=(strongprime p, generator g);
p=255996887; g=22;

PP=(EC secp256k1; BasePoint-Generator G; prime p; param. a, b);

Parameters a, b defines EC equation y2=x3+ax+b mod p over Fp.

PrK=x;
>> x=randi(p-1).

PrKECC=z;
>> z=randi(p-1).

PuK=a=gx mod p. PuKECC=A=zG.

Alice A: x=1975596; a=210649132; Alice A: z=…..; A=(xA, yA);

Elliptic Curve - Diffie-Hellman Key Agreement Protocol EC-DH KAP

`127_009 ECC_KAP-Enc-AKAP

 `127_009 ECC_KAP-Enc-AKAP Page 1

C:\Users\Eligijus\Documents\Zoom\2021-02-18 18.36.03 Eligijus Sakalauskas's Personal Meeting Room 9999112448

ECC key gen

h-value for A computation: hA = H(A); A = (xA, yA)

Key generation
1.Install Python 3.9.1.
2.Launch script Packages for joining a libraries.
3.Launch file ECC.

Public Parameters: PP = (EC, G, p), G=(xG, yG); PrKA=z <-- randi; z< n, max|z|<=256 bits.
 PuKA=z*G=A=(xA, yA); max|A|=2•256=512 bits.

 `127_009 ECC_KAP-Enc-AKAP Page 2

3.Launch file ECC.
4.If window is escaping, then open hiden windows
 in icon near the Start icon.

PrK
0x1099b9f87df15f7f27636629a863d2b0c327c50e18846f41d2bc06115ede8116
PuK
0x071851cc3933a97ac8a4d5d2b893f6e1f10ad9c149bb34f3f2c00ca3c169f5b1
0x298d0140ec22f7f7b6fdc6b7bb825336294116dd4c192f48308e05152114837f

256 bits length or a little less

512 bits length or a little less

xx

y2=x3+ax+b mod 17; Fp = {0, 1, 2, 3, …, 16}

y

y2=x3+ax+b mod 127

 `127_009 ECC_KAP-Enc-AKAP Page 3

x

y mod 11 (-y) mod 11

1 odd even -1=10

2 even odd -2=9

3 odd even -3=8

4 even odd -4=7

5 odd even -5=6

6 even odd -6=5

7 odd even -7=4

8 even odd -8=3

9 odd even -9=2

10 even odd -10=1

The positive and negative coordinates y and -y in EC in the real numbers plane XOY are presented in Fig.

The positive and negative numbers for p=11 are presented in table .

x

Let us consider abstract EC defined in XOY and expressed by the equation:
 y2 = x3 + ax + b mod p.
EC points are computed by choosing coordinate x and computing coordinate y2.
To compute coordinate y it is needed to extract root square of y2.
 y = ±√y2 mod p.
Notice that from y2 we obtain 2 points in EC, namely y and -y no matter computations are performed with
integers mod p or with real numbers.
Notice also that since EC is symmetric with respect to x-axis, the points y and -y are symmetric in EC. Since
all arithmetic operations are computed mod p then according to the definition of negative points in Fp

points y and -y must satisfy the condition

 y + (-y) = 0 mod p.
Then evidently
 y2 = (-y)2 mod p.
For example:
-2 mod 11 = 9
22 mod 11 = 4 & 92 mod 11 = 4
>> mod(9^2,11)

 `127_009 ECC_KAP-Enc-AKAP Page 4

Notice that performing operations mod p if y is odd then -y is even and vice versa.

This property allows us to reduce bit representation of PuKECC=A=zG =(xA, yA);
In normal representation of PuKECC it is needed to store 2 coordinates (xA, yA) every of them having 256 bits.
For PuKECC it is required to assign 512 bits in total.
Instead of that we can store only xA coordinate with an additional information either coordinate yA is odd or
even.
The even coordinate yA is encoded by prefix 02 and odd coordinate yA is encoded by prefix 03.
It is a compressed form of PuKECC.
If PuKECC is presented in uncompressed form than it is encoded by prefix 04.

Imagine, for example, that having generator G we are computing PuKECC=A=zG =(xA, yA) when z=
Please ignore that after this explanation since it is crasy to use such a small z. It is a gift for adversary
To provide a search procedure.

Then PuKECC is represented by point 8G as depicted in Fig. So we obtain a concrete point in EC being either
even or odd.
The coordinate yA of this point can be computed by having only coordinate xA using formulas presented above
and having prefix either 02 or 03.

EC: y2=x3+ax+b mod p

Let we computed PuKECC=A=(xA, yA)=8G .
Then (yA)2 = (xA)3+a(xA)+b mod p is computed.
By extracting square root from (yA)2 we obtain 2 points:

8G and -8G with coordinates (xA, yA) and(xA, -yA).
According to the property of arithmetics of integers mod p
either yA is even and -yA is odd or yA is odd and -yA is even.
The reason is that yA+(-yA)=0 mod p as in the example above when p=11 and that there is a symmetry of EC with
respect to x axis..
Then we can compress PuKECC representation with 2 coordinates (xA, yA) by representing it with 1coordinate xA

and adding prefix either 02 if yA is even or 03 if yA is odd.

>> mod(9^2,11)
ans = 4

PrK = z:
0x1099b9f87df15f7f27636629a863d2b0c327c50e18846f41d2bc06115ede8116
PuK = A = (xA, -yA). Let -yA is an even. Then coordinate -yA of EC point A can be omited.
0x071851cc3933a97ac8a4d5d2b893f6e1f10ad9c149bb34f3f2c00ca3c169f5b1 xA

0x298d0140ec22f7f7b6fdc6b7bb825336294116dd4c192f48308e05152114837f -yA .

PrK = z:
0x1099b9f87df15f7f27636629a863d2b0c327c50e18846f41d2bc06115ede8116
PuK = A = (xA, -yA). Let -yA is an even. Then coordinate -yA of EC point A can be omited.
02071851cc3933a97ac8a4d5d2b893f6e1f10ad9c149bb34f3f2c00ca3c169f5b1 xA

 `127_009 ECC_KAP-Enc-AKAP Page 5

Effective summation of EC points.
For example coputation of PuKECC.
PrK = z.
>> z=randi(p-1) % In real ECC |z| is of 256 bit length.
 % This means that ~ 2256 ~ 1080.

How to compute e.g. PuKECC=A?

PuKECC=A=zG =(xA, yA) when z

The solution is points doubling algoriyhm:
For example: by doubling pouts we can 8 times to sum point G
By realizing only 3 doubling: 23=8.
In order to sum 4096=212 points it is sufficient to sum log2212 = 12 times.
In order to sum 2256 points it is sufficient to sum log22256 = 256 times.

 `127_009 ECC_KAP-Enc-AKAP Page 6

