

Diffie-Hellman Key Agreement Protocol (DH KAP)

Public Parameters $PP=(p, g)$

$$\begin{aligned}
 u &\leftarrow \text{rand}(\mathbb{Z}_p^*) \\
 g^u \bmod p &= t_A \\
 t_B &\leftarrow \\
 k_{AB} &= (t_B)^u \bmod p = \\
 &= (g^v)^u \bmod p = g^{vu} \bmod p \\
 k_{AB} &= k = k_{BA}
 \end{aligned}
 \quad
 \begin{aligned}
 v &\leftarrow \text{rand}(\mathbb{Z}_p^*) \\
 t_B &= g^v \bmod p \\
 k_{BA} &= (t_A)^v \bmod p = \\
 &= (g^u)^v \bmod p = g^{uv} \bmod p
 \end{aligned}$$

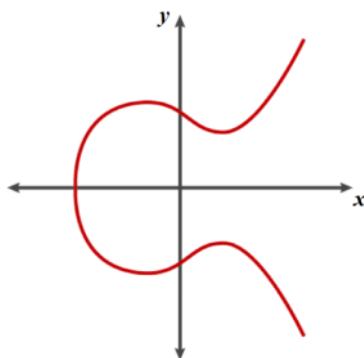
ElGamal Cryptosystem (CS)	Elliptic Curve Cryptosystem (CS)
$PP=(\text{strongprime } p, \text{ generator } g);$ $p=255996887; g=22;$	$PP=(\text{EC secp256k1}; \text{BasePoint-Generator } G; \text{prime } p; \text{param. } a, b);$ Parameters a, b defines EC equation $y^2=x^3+ax+b \bmod p$ over F_p .
$\text{PrK}=x;$ $\text{PrK}=x;$ $\text{PrK}=x;$	$\text{PrK}_{\text{ECC}}=z;$ $\text{PrK}_{\text{ECC}}=z;$
$\text{PuK}=g^x \bmod p.$	$\text{PuK}_{\text{ECC}}=A=z*G.$
Alice A: $x=1975596; a=210649132;$	Alice A: $z=....; A=(x_A, y_A);$

Signature creation for message M using ECDSA

Signature is formed on the h-value h of Hash function of M .

Recommended to use SHA256 algorithm

1. $h = H(M)=\text{SHA256}(M);$
2. $i \leftarrow \text{randi}; |i| \leq 256 \text{ bits};$
3. $R = i^* G = i^*(x_G, y_G) = (x_R, y_R);$
4. $r = x_R \bmod p;$
5. $s = (h + z \cdot r) \cdot i^{-1} \bmod p; |s| \leq 256 \text{ bits}; // \text{ Since } p \text{ is prime, then exists } s^{-1} \bmod p.$
 $// \gg s_m1=\text{mulinv}(s,p) \quad \% \text{ in Octave}$
6. $\text{Sign}(\text{PrK}_{\text{ECC}}=z, h) = \mathbf{g} = (r, s)$



Elliptic Curve - Diffie-Hellman Key Agreement Protocol EC-DH KAP

Public Parameters: $\mathbf{PP} = (\mathbf{EC}, \mathbf{G}, p)$, $\mathbf{G} = (x_G, y_G)$;

$\mathbf{PrK_A} = \mathbf{z} \leftarrow \text{randi}(p)$; $\mathbf{z} < n$, $\max|\mathbf{z}| \leq 256$ bits.

$\mathbf{PuK_A} = \mathbf{z}^* \mathbf{G} = \mathbf{A} = (x_A, y_A)$; $\max|\mathbf{A}| = 2 \cdot 256 = 512$ bits.

$\mathcal{A} : u \leftarrow \text{randi}(p)$

$$K_A = u * G$$

$\xrightarrow{K_A} \mathcal{B} : v \leftarrow \text{randi}(p)$

$$\begin{aligned} K_{AB} &= u * (K_B) = \\ &= (u * v) * G. \\ &\pmod p \end{aligned}$$

$$\xleftarrow{K_B}$$

$$K_{AB} = K = K_{BA}$$

$$K_B = v * G$$

$$\begin{aligned} K_{BA} &= v * K_A = \\ &= (v * u) * G. \\ &\pmod p \end{aligned}$$

ECC key gen

Authenticated KAP

h-value for \mathbf{A} computation: $h_A = H(\mathbf{A})$; $\mathbf{A} = (x_A, y_A)$

$$\mathbf{PrK_B} = y ; \mathbf{PuK_B} = B$$

$$\text{Sign}(\mathbf{PrK_A} = z, \mathbf{A}) = (r_A, s_A) = \tilde{G}_A$$

$u \leftarrow \text{randi}$

$$K_A = u * G$$

$$\text{Sign}(\mathbf{PrK_A} = z, K_A) =$$

$$(r_{KA}, s_{KA}) = \tilde{G}_{KA}$$

$\xrightarrow{A, \tilde{G}_A, K_A, \tilde{G}_{KA}} \mathcal{B} : \text{Ver}(\mathbf{PuK_A} = A, \tilde{G}_A, A) \rightarrow \text{Yes}$

$\text{Ver}(\mathbf{PuK_A} = A, \tilde{G}_{KA}, K_A) \rightarrow \text{Yes}$

$v \leftarrow \text{randi}$

$$K_B = v * G$$

$$\text{Sign}(\mathbf{PrK_B} = y, B) = (r_B, s_B) = \tilde{G}_B$$

$$\text{Sign}(\mathbf{PrK_B} = y, K_B) = (r_{KB}, s_{KB}) = \tilde{G}_{KB}$$

$\text{Ver}(\mathbf{PuK_B} = y, \tilde{G}_B, B) \rightarrow \text{Yes}$

$\text{Ver}(\mathbf{PuK_B} = y, \tilde{G}_{KB}, K_B) \rightarrow \text{Yes}$

$$K_{AB} = u * (K_B) =$$

$$= (u * v) * G.$$

$$K_{BA} = v * G =$$

$$= (v * u) * G.$$

$$K_{AB} = K = K_{BA}$$

C:\Users\Eligijus\Documents\Zoom\2021-02-18 18.36.03 Eligijus Sakalauskas's Personal Meeting Room 9999112448

Key generation

1. Install Python 3.9.1.

2. Launch script Packages for joining a libraries.

3. Launch file ECC.

Packages	2021.12.05 18:23	Python File	1 KB
ECC	2021.12.09 19:06	Python File	9 KB

3.Launch file ECC.

4.If window is escaping, then open hiden windows
in icon near the Start icon.

Documents > 500 SOFTAS 2023 > Python 3.9.1 > 111.ECDSA 2023.09

Name	Date modified	Type	Size
Archyvas	2023-09-28 19:26	File folder	
111.ECDSA.zip	2023-09-28 19:21	Compressed (zippe...)	4 KB
App_PrK.txt	2023-10-27 13:41	Text Document	1 KB
App_PuK.txt	2023-10-27 13:41	Text Document	1 KB
App_Signature.txt	2023-10-27 13:49	Text Document	1 KB
ECC.py	2023-09-21 19:15	PY File	9 KB
Instrukcija.txt	2021-12-15 14:29	Text Document	1 KB
Packages.py	2021-12-05 18:23	PY File	1 KB

ECCDS python app
Please input required command:
1 - Generate new ECC private and public keys
2 - Export private and public keys
3 - Export private key
4 - Export public key
5 - Load private key
6 - Load data file
7 - Sign loaded file
8 - Load public key
9 - Verify signature
10 - Export signature
11 - Load signature
12 - Draw secp256k1 graph in real numbers
13 - Draw secp256k1 graph over finite field
exit/e - Exit app
Input command:

Input command: 1
ECC private key loaded/generated
ECC public key loaded/generated
ECCDS python app
Please input required command:
1 - Generate new ECC private and public keys
2 - Export private and public keys
3 - Export private key
4 - Export public key
5 - Load private key
6 - Load data file
7 - Sign loaded file
8 - Load public key
9 - Verify signature
10 - Export signature
11 - Load signature
12 - Draw secp256k1 graph in real numbers
13 - Draw secp256k1 graph over finite field
exit/e - Exit app

Input command: 2
ECC private key loaded/generated
ECC public key loaded/generated
ECCDS python app
Please input required command:
1 - Generate new ECC private and public keys
2 - Export private and public keys
3 - Export private key
4 - Export public key
5 - Load private key
6 - Load data file
7 - Sign loaded file
8 - Load public key
9 - Verify signature
10 - Export signature
11 - Load signature
12 - Draw secp256k1 graph in real numbers
13 - Draw secp256k1 graph over finite field
exit/e - Exit app

Documents > 100 MOKYMAS > 100 2024 Rud > B127

App_PrK.txt	2024-09-17 14:44	Text Document	1 KB
App_PuK.txt	2024-09-17 14:44	Text Document	1 KB

PrK

0x1099b9f87df15f7f27636629a863d2b0c327c50e18846f41d2bc06115ede8116

256 bits length or a little less

PuK

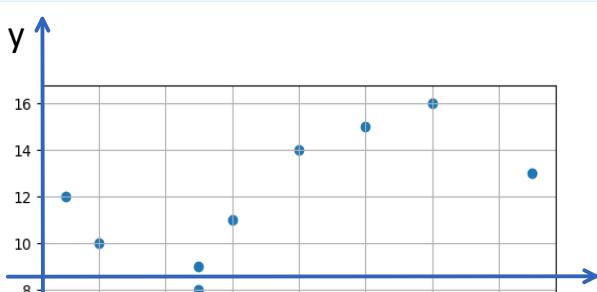
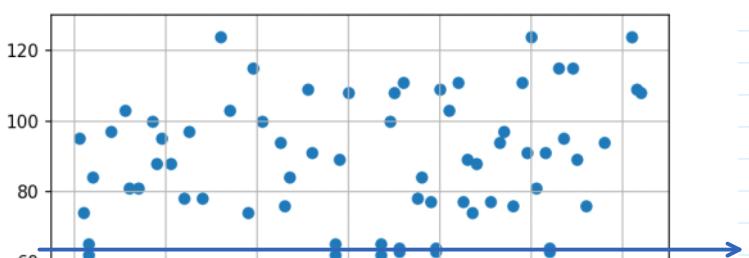
0x071851cc3933a97ac8a4d5d2b893f6e1f10ad9c149bb34f3f2c00ca3c169f5b1

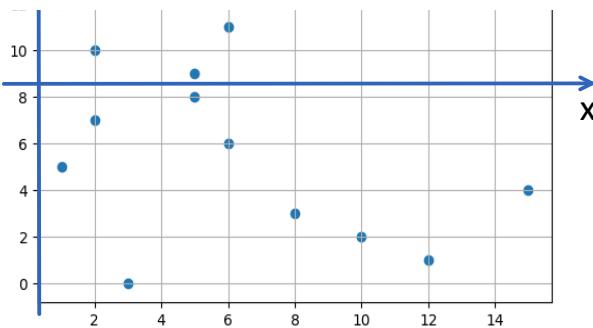
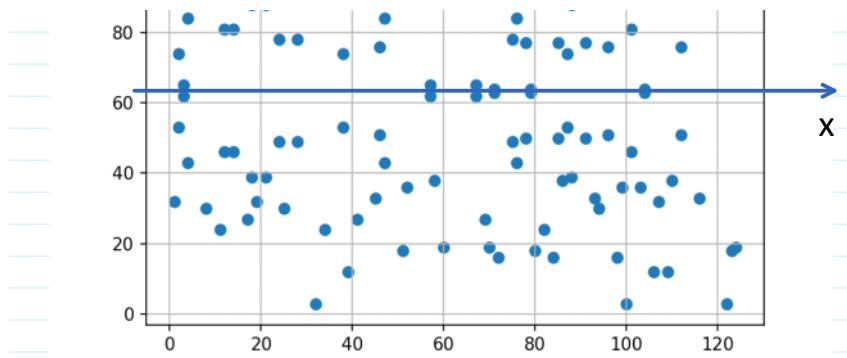
512 bits length or a little less

0x298d0140ec22f7f7b6fdc6b7bb825336294116dd4c192f48308e05152114837f

$$y^2 = x^3 + ax + b \pmod{17}; \quad F_p = \{0, 1, 2, 3, \dots, 16\}$$

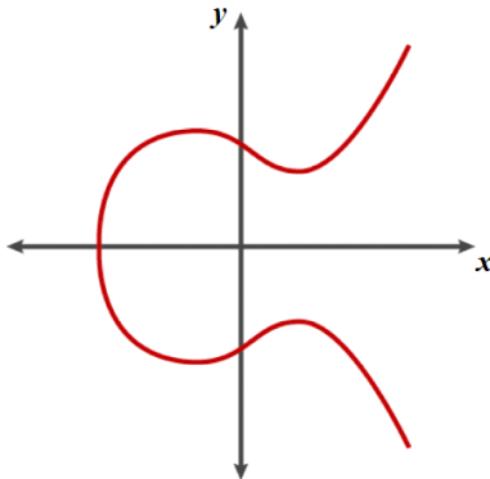
$$y^2 = x^3 + ax + b \pmod{127}$$





x=54.7 y=112.4

The positive and negative coordinates y and $-y$ in EC in the real numbers plane XOY are presented in Fig. The positive and negative numbers for $p=11$ are presented in table .



$y \bmod 11$			$(-y) \bmod 11$
1	odd	even	-1=10
2	even	odd	-2=9
3	odd	even	-3=8
4	even	odd	-4=7
5	odd	even	-5=6
6	even	odd	-6=5
7	odd	even	-7=4
8	even	odd	-8=3
9	odd	even	-9=2
10	even	odd	-10=1

Let us consider abstract EC defined in XOY and expressed by the equation:

$$y^2 = x^3 + ax + b \bmod p.$$

EC points are computed by choosing coordinate x and computing coordinate y^2 .

To compute coordinate y it is needed to extract root square of y^2 .

$$y = \pm \sqrt{y^2} \bmod p.$$

Notice that from y^2 we obtain 2 points in EC, namely y and $-y$ no matter computations are performed with integers $\bmod p$ or with real numbers.

Notice also that since EC is symmetric with respect to x -axis, the points y and $-y$ are symmetric in EC. Since all arithmetic operations are computed $\bmod p$ then according to the definition of negative points in F_p points y and $-y$ must satisfy the condition

$$y + (-y) = 0 \bmod p.$$

Then evidently

$$y^2 = (-y)^2 \bmod p.$$

For example:

$$-2 \bmod 11 = 9$$

$$2^2 \bmod 11 = 4 \quad \& \quad 9^2 \bmod 11 = 4$$

```
>> mod(9^2,11)
```

```
ans = 4
```

Notice that performing operations **mod p** if y is odd then $-y$ is even and vice versa.

This property allows us to reduce bit representation of $\text{PuKECC} = A = z * G = (x_A, y_A)$;

In normal representation of PuKECC it is needed to store 2 coordinates (x_A, y_A) every of them having 256 bits.

For PuKECC it is required to assign 512 bits in total.

Instead of that we can store only x_A coordinate with an additional information either coordinate y_A is odd or even.

The even coordinate y_A is encoded by prefix 02 and odd coordinate y_A is encoded by prefix 03.

It is a compressed form of PuKECC .

If PuKECC is presented in uncompressed form than it is encoded by prefix 04.

Imagine, for example, that having generator G we are computing $\text{PuKECC} = A = z * G = (x_A, y_A)$ when $z=8$.

Please ignore that after this explanation since it is crazy to use such a small z . It is a gift for adversary

To provide a search procedure.

Then PuKECC is represented by point $8G$ as depicted in Fig. So we obtain a concrete point in EC being either even or odd.

The coordinate y_A of this point can be computed by having only coordinate x_A using formulas presented above and having prefix either 02 or 03.

EC: $y^2 = x^3 + ax + b \pmod{p}$

Let we computed $\text{PuKECC} = A = (x_A, y_A) = 8G$.

Then $(y_A)^2 = (x_A)^3 + a(x_A) + b \pmod{p}$ is computed.

By extracting square root from $(y_A)^2$ we obtain 2 points:

$8G$ and $-8G$ with coordinates (x_A, y_A) and $(x_A, -y_A)$.

According to the property of arithmetics of integers **mod p**

either y_A is even and $-y_A$ is odd or y_A is odd and $-y_A$ is even.

The reason is that $y_A + (-y_A) = 0 \pmod{p}$ as in the example above when $p=11$ and that there is a symmetry of EC with respect to x axis..

Then we can compress PuKECC representation with 2 coordinates (x_A, y_A) by representing it with 1 coordinate x_A and adding prefix either 02 if y_A is even or 03 if y_A is odd.

PrK = z:

0x1099b9f87df15f7f27636629a863d2b0c327c50e18846f41d2bc06115ede8116

$\text{PuK} = A = (x_A, -y_A)$. Let $-y_A$ is an even. Then coordinate $-y_A$ of EC point A can be omitted.

0x071851cc3933a97ac8a4d5d2b893f6e1f10ad9c149bb34f3f2c00ca3c169f5b1 x_A

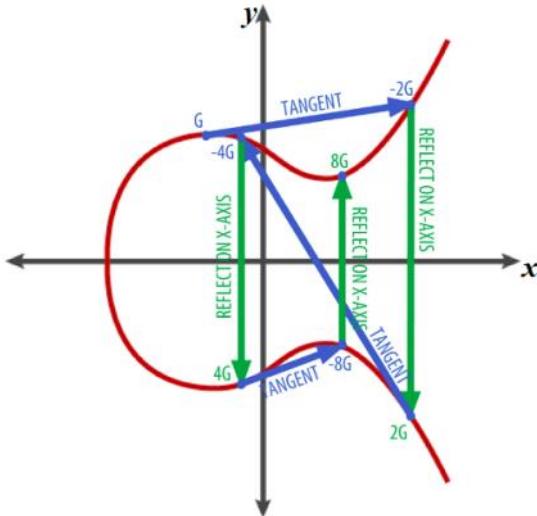
0x298d0140ec22f7f7b6fdc6b7bb825336294116dd4c192f48308e05152114837f $-y_A$.

PrK = z:

0x1099b9f87df15f7f27636629a863d2b0c327c50e18846f41d2bc06115ede8116

$\text{PuK} = A = (x_A, -y_A)$. Let $-y_A$ is an even. Then coordinate $-y_A$ of EC point A can be omitted.

0x071851cc3933a97ac8a4d5d2b893f6e1f10ad9c149bb34f3f2c00ca3c169f5b1 x_A



Effective summation of EC points.

For example computation of PuK_{ECC} .

$\text{PrK} = z$.

$\gg z = \text{randi}(p-1)$ % In real ECC $|z|$ is of 256 bit length.

% This means that $\sim 2^{256} \sim 10^{80}$.

How to compute e.g. $\text{PuK}_{\text{ECC}} = A$?

$\text{PuK}_{\text{ECC}} = A = z * G = (x_A, y_A)$ when z .

The solution is points doubling algorithm:

For example: by doubling points we can 8 times to sum point G

By realizing only 3 doubling: $2^3 = 8$.

In order to sum $4096 = 2^{12}$ points it is sufficient to sum $\log_2 2^{12} = 12$ times.

In order to sum 2^{256} points it is sufficient to sum $\log_2 2^{256} = 256$ times.