*127_009 ECC_KAP-Enc-AKAP

- Plaintext
3

Sender

U Ciphertext
" Open

Encrypt Communication Deerypt Recipient

Channel

Same key is used to

U Plaintext .
| - | - L]

encrypt

and decrypt message

Shared Secret Key

Diffie-Hellman Key Agreement Protocol (DH KAP)
Public Parameters PP=(p,0)

w o= rand (Z7)
e g"mxﬂd p=t,
LR -
|I(;.H‘ :({EJ ¢ mﬂ:{ J|'LJ =
=(3°) o p = "o

~ta G v med (2
- ' Tt :fr;;”’md P
kg = (T4)v wod P -
p =(q') wod = g*'wed P
a = Kk = Kgy

ElGamal Cryptosystem (CS)

Elliptic Curve Cryptosystem (CS)

PP=(strongprime p, generator g);
p=255996887; g=22;

PP=(EC secp256k1; BasePoint-Generator G; prime p; param. a, b);
Parameters a, b defines EC equation y?=x3+ax+b mod p over F.

PrKk=x;
>> x=randi(p-1).

PrKecc=z;
>> z=randi(p-1).

PuK=a=g*mod p.

PuKgcc=A=z=* G.

Alice A: x={[91I5806; 2~210649182;

Alice A: z=l; A=(Xa, YA):

Signature creation for message M using ECDSA
Signature is formed on the h-value h of Hash function of M.
Recommended to use SHA256 algorithm

. h = H(M)=SHA256(M);

. i <--randi; |i| < 256 bits;
-R= IIG = ’I(pr ya) = (X, Yr);
. r=xgmod p;

U b WN B

6. Sign(PrKecc=z, h) =6 = (r, s)

.s=(h+z*r)*itmodp; |s|< 256 bits; // Since p is prime, then exists s mod p.

// >>s_ml=mulinv(s,p) % in Octave

~
_

_/
A\

Elliptic Curve - Diffie-Hellman Key Agreement Protocol EC-DH KAP

127_009 ECC_KAP-Enc-AKAP Page 1

Public Parameters: PP = (EC, G, p), G=(xg, Vs); PrKa=z <-- randi; z< n, max|z|<=256 bits.

PuKa=z*G=A=(x4, ya); max|A|=2256=512 bits.

1 u= ands (p)

W, = Ux G La B V= taudi(p)
ok Ke = V>4
Kap = M*M@): B) >
- @OW/}* &, _
mod p ’(g;lu)%&“
Kig = K =Kjg, s
Authenticatvd KAF

h-value for A computation: ha = H(A); A = (Xa, Ya)
Prlkg =y ; B, =2
Sign (0l ,= 25 A)=y 50)=65

U =— tavd i

KA = U¥ G A;QA,KAJGJ% g \/@r(ﬁ/\[A:A ; 6;)A>*j?5
Sign (Prity = 2, 5) = o (R =A 5 Sips K,) —= Yoz
C{\b/aA 951’“‘):6/@ V= rand [

e, 6& JKszé\kg 51(@6,0 (PMB:;L, B)j (ﬁs,SB): 6/5
Vor (k= 63, 8} sign (o= 1K6)= (i1 516)" %

Ver (PMKB:J, g s Kg)—=es

Koo = Ux(ks) =

Koy =Vn G =
:@v\/}*&,

=(V-u)x .
Kig = K =Ky,

C:\Users\Eligijus\Documents\Zoom\2021-02-18 18.36.03 Eligijus Sakalauskas's Personal Meeting Room 9999112448

Key generation — :
1.Install Python 3.9.1. 7 Pockeoss R et h

2.Launch script Packages for joining a libraries. _ i
3 Launch file ECC. [# Ecc 2021.12.09 19:06 Pythan File 9KB

127_009 ECC_KAP-Enc-AKAP Page 2

3.Launch file ECC.

in icon near the Start icon.

Documents » 500 SOFTAS 2023 » Python 3.91 » 111.ECDSA 2023.09

Archyvas
111.ECDSAzZip
App_Pricd
App_Puktxt
App_Signature, txt
I Eccpy
Instrukeija.txt

P Packages.py

Input command: 1
ECC private key loaded/generated
ECC public key loaded/generated
ECCDS python app
Please input required command:
Generate new ECC private and public keys
Export private and public keys
Export private key
Export public key
Load private key
Load data file
Sign loaded file
Load public key
Verify signature
Export signature
Load signature
Draw secp256kl graph in real numbers
Draw secp256kl graph over finite field
it/e - Exit app

Documents 100 MOKYMAS 100 2024 Rud B127

PrK

0x1099b9f87df15f7f27636629a863d2b0c327c50e18846f41d2bc06115ede8116

PuK

0x071851cc3933a97ac8a4d5d2b893f6e1f10ad9c149bb34f3f2c00ca3c169f5bl X

4.1f window is escaping, then open hiden windows

[# ELL

Python File

P c\users\Eligijus\AppData\Local\Programs\Python\Python311\python.exe
gy PP g b Y Py

CCDS python app
Please input required command:

YKE

1 Generate new ECC private and public keys

Export private and public keys
Export private key

Export public key

Load private key

Load data file

Sign loaded file

Load public key

Verify signature

Export signature

Load signature

WoONOTUVBWN

Draw secp256kl graph in real numbers
Draw secp256kl graph over finite field

exit/e - Exit app
[Input command:

Input command: 2
ECC private key loaded/generated
ECC public key loaded/generated
ECCDS python app
Please input required command:
Generate new ECC private and public keys
Export private and public keys
Export private key
Export public key
Load private key
Load data file
Sign loaded file
Load public key
Verify signature
Export signature
Load signature
Draw secp256k1 graph in real numbers
Draw secp256kl graph over finite field
exit/e - Exit app

0 [App_Prictxt 2024-09-17 14:44 Text Document

[EJ App_Pukixt 2024-09-17 14:44 Text Document

0x298d0140ec22f7f7b6fdc6b7bb825336294116dd4c192f48308e05152114837f g '

y2=x3+ax+b mod 17; F,=1{0,1,2,3,...,16}

A

y

16 &

10 L

"127_009 ECC_KAP-Enc-AKAP Page 3

v

y>=x3+ax+b mod 127

256 bits length or a little less

512 bits length or a little less

© o
120 4
. oo
® o o o° ® L
100 - LI LN s
o ® o °® ° @
o0 ®s o ‘%o
g0l | ® e o o b
® L X o © L ™ .k L I P
it IV S ——

The positive and negative numbers for p=11 are presented in table .

L] 80 -] - o ® X
10 & ® °e L o % o0, °
. L.
8 ° ;(50_-'_. $—4o—+ & =
o
6 ° w °° ® e et o0 ® &) X
¢ 404 ® L L
4 ° o® °® ® e ®
0 L] ® ..- ® b ® .
2 e L4 @ L]
° 201 e O o o, ° @
L (1]
0+ 5
‘ 0 L] o °
2] 6 8 10 12 14 i i . ; . : .
0 20 40 60 80 100 120
AEd> Q= x=54.7 y=112.4

The positive and negative coordinates y and -y in EC in the real numbers plane XQOY are presented in Fig.

y?=x3+ax + b mod p.

To compute coordinate y it is needed to extract root square of y2.
y =+Vy?mod p.

integers mod p or with real numbers.

points y and -y must satisfy the condition

y+(-y) =0 mod p.
Then evidently

y?=(-y)*mod p.
For example:
-2mod 11=9
22mod11=4 & 9°mod 11=4

"127_009 ECC_KAP-Enc-AKAP Page 4

Y y mod 11 (-y) mod 11

1 odd even -1=10

2 even odd -2=9

3 odd even -3=8

4 even odd -4=7

« " 5 odd even -5=6
6 even odd -6=5

7 odd even -7=4

8 even odd -8=3

9 odd even -9=2

M 10 even odd -10=1

Let us consider abstract EC defined in XOY and expressed by the equation:

EC points are computed by choosing coordinate x and computing coordinate y?2.

Notice that from y? we obtain 2 points in EC, namely y and -y no matter computations are performed with

Notice also that since EC is symmetric with respect to x-axis, the points y and -y are symmetric in EC. Since
all arithmetic operations are computed mod p then according to the definition of negative points in Fp

>>mod(972,11)
ans =4

Notice that performing operations mod p if y is odd then -y is even and vice versa.

This property allows us to reduce bit representation of PuKecc=A=z* G =(Xa, Y»);

In normal representation of PuKecc it is needed to store 2 coordinates (x», ya) every of them having 256 bits.
For PuKEecc itis required to assign 512 bits in total.

Instead of that we can store only xa coordinate with an additional information either coordinate ya is odd or
even.

The even coordinate yx is encoded by prefix 02 and odd coordinate ya is encoded by prefix 03.

It is a compressed form of PuKecc.

If PuKecc is presented in uncompressed form than it is encoded by prefix 04.

Imagine, for example, that having generator G we are computing PuKecc=A=z*G =(Xa, Y») When z=8.
Please ignore that after this explanation since it is crasy to use such a small z. It is a gift for adversary

To provide a search procedure.

Then PuKecc is represented by point 8 G as depicted in Fig. So we obtain a concrete point in EC being either
even or odd.

The coordinate ya of this point can be computed by having only coordinate xa using formulas presented above
and having prefix either 02 or 03.

EC: y>=x3+ax+b mod p

Let we computed PuKecc=A=(Xx, y2)=8G .

Then (ya)?= (Xa)3+a(xa)+b mod p is computed.

By extracting square root from (ya)? we obtain 2 points:

8G and -8G with coordinates (Xa, Ya) and(Xa, -ya).

According to the property of arithmetics of integers mod p

either ya is even and -y is odd or ya is odd and -ya is even.

The reason is that ya+(-y~)=0 mod p as in the example above when p=11 and that there is a symmetry of EC with
respect to x axis..

Then we can compress PuKecc representation with 2 coordinates (xa, y») by representing it with 1coordinate xa
and adding prefix either 02 if ya is even or 03 if y is odd.

PrK =2z:

0x1099b9f87df15f7f27636629a863d2b0c327c50e18846f41d2bc06115ede8116

Puk = A = (Xa, -ya). Let -ya is an even. Then coordinate -y of EC point A can be omited.
0x071851cc3933a97ac8a4d5d2b893f6e1f10ad9c149bb34f3f2c00ca3c169f5b1 Xa
0x298d0140ec22f7f7b6fdc6b7bb825336294116dd4c192f48308€05152114837f -Ya .

PrK =z:

0x1099b9f87df15f7f27636629a863d2b0c327c50e18846f41d2bc06115ede8116

Puk = A = (Xa, -ya). Let -ya is an even. Then coordinate -y of EC point A can be omited.
02071851cc3933a97ac8a4d5d2b893f6e1f10ad9c149bb34f3f2c00ca3c169f5b1 XA

"127_009 ECC_KAP-Enc-AKAP Page 5

"

SIXY-X NO D343y

)

REFLECTIDN X-AXIS
V-X NOJLO3 1434

"127_009 ECC_KAP-Enc-AKAP Page 6

Effective summation of EC points.
For example coputation of PuKecc.
PrK =z.
>> z=randi(p-1) % In real ECC |z| is of 256 bit length.
% This means that ~ 2256 ~ 10%0,
How to compute e.g. PuKgcc=A?
PuKecc=A=z*G =(Xa, y») When z.
The solution is points doubling algoriyhm:
For example: by doubling pouts we can 8 times to sum point G
By realizing only 3 doubling: 23=8.
In order to sum 4096=2'2 points it is sufficient to sum log,2% = 12 times.
In order to sum 22°® points it is sufficient to sum log,22°¢ = 256 times.

